

Deploying GitKraken with GitHub at Scale
Adopting a graphical user interface to overcome the challenges of implementing Git

1

Table of Contents
Introduction 3

The Problem 3
What to Expect 3

Why Git? 4
History 4
Distributed Version Control 4

Everyday challenges of using Git 5

A GUI Approach 8
Visualizing your repository’s history 8
Drag-and-drop to simplify power tasks 10
Collaboration through remotes 11
Collaboration through pull requests 12
Resolve merge conflicts faster 15
Built-in forgiveness 17

Working in isolated networks behind a firewall 18
GitKraken Enterprise: Self-Hosted 18
GitKraken Enterprise: Stand-Alone 18
Deploying GitKraken Enterprise Stand-Alone 19

Training and educational resources 19

Conclusion 19

About GitKraken 19

2

Introduction
“Git is the dominant choice for version control for developers today,

with almost 90% of developers checking in their code via Git.”
-Stack Overflow, Developer Survey 2018

The Problem
Without-a-doubt Git is the industry standard for version control today. Unfortunately,
adopting Git often comes with a lot of additional overhead. In time, Git boosts an
organization’s overall efficiency; however, developers initially face a steep learning curve.
Failure to address this problem increases the time it takes to ship code and decreases code
stability.

What to Expect
This white paper will walk you through the benefits of adopting Git as your version control
system (VCS), and how to tackle the accompanying challenges head on. We will cover
common implementation practices associated with the popular Git hosting services
GitHub.com and GitHub Enterprise, and how to enhance their functionality with GitKraken.
You’ll find out how to deploy Git, GitHub and GitKraken at scale, and how this process will
save you time with a graphical user interface (GUI) approach.

After exploring solutions to this problem, we will address how to maintain security
standards that are common to industries such as defense, medicine, finance, government,
and others with offline/firewalled environments.

After reading this whitepaper you will be equipped with the knowledge needed to: easily
transition your organization to Git, roll out a unified branching strategy, and improve your
users’ understanding of actions between their local and remote repositories.

3

https://insights.stackoverflow.com/survey/2018#work-_-version-control

Why Git?
One look at Google Trends will show Git has without-a-doubt become the dominant version
control method when compared to competing systems used in the past:

Git empowers teams to save time through its history, collaboration, and branching feature
set. We will explore these key advantages in the following sections.

History
History is critical for maintaining source code because it allows developers to locate the
exact commit with a given changeset. Once a commit is identified, it is then possible to
identify the commit author through ‘file blame’ or ‘file history’ and request fixes or
additional changes.

Distributed Version Control
Git’s distributed nature provides users with better collaboration capabilities when
compared to older version control systems. Any initialized repository can be cloned using
the git clone command. This affords collaborators the ability to copy the entire project
and work in parallel with their team members. No need to wait your turn to check out files
or push changes.

Because any clone of a project can be arbitrarily designated as the main project, it is a
common practice to designate the main project on a Git hosting service such as GitHub.

4

Collaborators may then ‘fork’ the repository, which is the git clone operation but
performed by the Git hosting service on the collaborator’s behalf.

Hosting repositories on a Git hosting service such as GitHub makes the project more
accessible to any collaborator with the appropriate permissions. If the project is open
source, then it is accessible to the public. A remote repository, often called a remote, is a
Git repository hosted online—such as on a Git hosting service—or some other network.

Cloning a remote or a fork creates a local version of that entire repository on a user’s
machine, giving the developer a sandbox to experiment without affecting the original
codebase. Cloning also establishes a connection between the local repository on the
developer’s machine and the remote repository, allowing ‘push’ and ‘pull’ actions with the
remote project. However it is not necessary to stay connected to a remote repository until
a user wishes to push up their changes or pull in changes from their team members.

Collaboration is mainly possible because of Git’s branching feature. Creating a branch using
the git branch command allows users to create a sandbox for features and fixes. Each
developer is able to not only work in parallel with other users, but they can also create any
number of branches to work in parallel with themselves.

Additionally, switching branches is an inexpensive operation in Git, therefore any user can
checkout a branch and immediately get to work.

With this boost in efficiency, it is clear to see why software development teams have
gravitated towards Git for source control.

Everyday challenges of using Git
While Git helps increase an organization’s efficiency, there is a steep learning curve to
master Git.

Git commands are primarily typed into the command line interface (or CLI for short). This
minimalist interface demands the user understand the meaning behind their commands
because there is little-to-no immediate visual feedback affirming an action has been
performed as expected.

5

To provide context, the Git-scm reference page has links to over 50 commands. Each page
then has additional flags and rules to consider, which makes it difficult to remember all the
possible combinations and proper syntaxes.

6

https://git-scm.com/docs

For example, say a user wishes to checkout a different branch using the command line.
First they should confirm what branches are available for checkout by entering the
command: git checkout

Then, the user will need to identify the target branch and enter the following command to
perform the checkout:

git checkout -b <new-branch> <existing-branch>

While this may seem elementary to a seasoned user, they are still required to remember or
reference the command, flags, and syntax for the operation. If the user is unable to recall
the exact format, they must then either consult an online resource or ask a fellow
teammate.

This paper does not doubt or question a developer’s ability to learn the necessary
commands to properly interact with their repositories. However, a developer’s time is better
spent programming than learning to manage the overhead associated with Git commands.

Additionally, migrating to a Git hosting service such as GitHub does not completely address
this learning curve. While it is possible to review the files directly on a GitHub repo, it is not

7

designed to detect changes made locally to your repository. Any changes made directly on
the GitHub repo will be made immediately available to any other collaborators with access
to the remote repository.

Teams commonly implement a solution like GitHub or GitHub Enterprise, but then expect
users to depend on the command line interface (CLI) for their daily Git operations.
However, if teams are able to reduce the time it takes their users to perform Git
commands, these teams will be rewarded with faster release cycles, more stable code, and
more confident developers. This is where a GUI approach comes into play.

A GUI Approach
Graphical user interfaces help users visualize information and actions more clearly. In
much the same way that operating systems have become easier to use by offering a
graphical user interface for managing applications, dragging-and-dropping files, and
clicking on icons to perform actions, developers can take advantage of GitKraken to
dramatically improve their productivity, reduce error rates, and learn Git in a more intuitive
way. In the following sections, we’ll discuss how GitKraken’s intuitive visual interface makes
developers more productive.

Visualizing your repository’s history
Instead of manually verifying whether Git commands performed the intended action in the
CLI, users need only open their repository in GitKraken to view their commit history and
more.

8

https://support.gitkraken.com/img/documentation/standalone/standalone-glory@2x.png

In the CLI, a user is required to enter a command to either checkout a new branch or view
the contents of a commit. Prior to that, the user needs to confirm the branch name or have
the commit SHA on hand.

Contrastingly, in the GitKraken GUI, the commits are drawn from one child commit to its
parent commit(s). Users need only click on a given commit to review the list of files that
were modified, renamed, added or deleted. Clicking on the file name then leads to the file
diff, which tells users which lines and sections of code were modified.

Training Resource: The GitKraken Cheat Sheet is a great way to quickly acclimate users
with the GitKraken user interface.

9

https://support.gitkraken.com/img/documentation/working-with-files/diff/diff-1@2x.png
https://www.gitkraken.com/downloads/gitkraken-cheat-sheet-jun19.pdf

Drag-and-drop to simplify power tasks
If a user has 2 branches, what actions are available between those branches? Is it possible
to rebase or can they only merge? Even Git power-users may need to take a few moments
to evaluate the state of their repo through the CLI before uncovering the answers to these
questions.

However, users are able to completely bypass that uncertainty by performing a
drag-and-drop action in GitKraken. The action will reveal what operations are possible for
the 2 branches, without locking the user to any of those actions.

Users are empowered to freely explore their options between branches, within the context
of their repo history.

Training Resource: In under 4 minutes, this Git tutorial video will show you how to
rebase in the CLI vs the GitKraken Git Client. You’ll see what happens when a merge conflict
occurs, and how to resolve it.

10

https://support.gitkraken.com/img/documentation/repositories/local_repository/add-branch@2x.png
https://www.gitkraken.com/learn-git#rebase-part-two

Collaboration through remotes
Remote repositories are the key to collaboration within a team. By adding remotes, users
get visibility into their teammates branches. This visibility then makes it possible for users
to checkout these remote branches to perform a code review for their pull requests.

What would normally take a git remote add command, followed by the name of a
remote that a user has to lookup in the CLI, is performed with just a click in GitKraken. If a
user has the GitHub integration set up in GitKraken, they will see the list of GitHub remote
repositories they have permission to access.

Remote branches are automatically added to the graph, making it quicker to identify how
far along your teammates are with their work.

11

https://support.gitkraken.com/img/documentation/integrations/github/remote@2x.png

Note: GitKraken nevers hosts the source code for a repository. The app will either open a
repository from a user’s local machine or the app will authenticate with the Git hosting
service over HTTPS or SSH. This remains true for all versions of the app.

Collaboration through pull requests
Because remotes are better visualized in a GUI, it sets the stage for easier pull request
creation. As pictured below, in GitKraken, users need only drag and drop one branch onto
another to access the pull request option.

12

This drag and drop action prefills the repo, branch, title, and description information:

Furthermore, with the GitHub integration users can add reviewers, assignees, and labels to
their pull request.

13

Pull requests are gathered in the left pane, and if a team has integration with a CI/CD tool,
GitKraken will show the build status on hover.

All of this information is centralized in one location, saving the user the need to open up
GitHub or any other tool to create a pull request, assign reviewers, or check on a build
status.

Training Resource: In this comprehensive video guide, find out How to use GitHub with
GitKraken, and how to set up integrations with GitHub.com and GitHub Enterprise.

14

https://www.gitkraken.com/github#how-to-github-gitkraken
https://www.gitkraken.com/github#how-to-github-gitkraken

Resolve merge conflicts faster
Merge conflicts force users to compare at least 2 different file versions and decide what
changes to keep from each. While it is possible to have as little as 1 file in conflict between
2 branches, it is possible to have many more files in conflict—each with hunks of
differences that must be reconciled.

Without a GUI, users may see something like this in the CLI:

From here, the user must open the conflicted file in a code editor and locate any sections
that are partitioned by these <<< symbols.

15

https://medium.com/@jmarhee/using-git-rebase-to-resolve-merge-conflicts-on-the-cli-f0c4716f626d

It is not clear in the text editor which branch’s changeset the user is currently viewing, nor
is it clear how the file’s final output will look. While it is possible to resolve conflicts in the
CLI and a code editor, GitKraken provides a much faster, more efficient method to address
a merge conflict.

Training Resource: In under 3 minutes, this Git tutorial video will users what a merge
conflict is, and how to resolve merge conflicts in the GitKraken Git Client.

16

https://www.gitkraken.com/learn-git#merge-conflict

Built-in forgiveness
Developers often break code before they can fix it, which is why it’s important to build in
fast ways to undo actions without needing to consult the web or colleagues.

With GitKraken, in one click users can undo a commit, merge, or checkout action so long as
the change has not been pushed up to the remote.

Additionally, because Git keeps the history of a project, the graph in GitKraken makes it
easier for a user to identify a point in time they wish to explore. It is then possible to reset
the current branch back to that point in time by simply right-clicking and selecting the
preferred reset option.

Without GitKraken, a developer would need to take the time to revert commits in the CLI
until they got to a point where they had “undone” a commit. Git provides multiple paths to
solving a version control problem, and GitKraken makes those options more accessible and
discoverable to users.

17

https://support.gitkraken.com/img/documentation/working-with-files/undo-redo/undo@2x.png
https://support.gitkraken.com/img/documentation/working-with-files/commits/reset-commit@2x.png

Working in isolated networks behind a firewall
Organizations from industries such as defense contracting, medicine, finance, or
government, often isolate their networks from the Internet for security purposes. However,
software developers from these industries still demand the best productivity tools available
on the market. These entities are thus drawn to self-hosted software solutions in order to
meet their organizations’ security standards while still delivering the tools their teams
need.

GitKraken Enterprise addresses these security requirements by providing a self-hosted and
a stand-alone option.

GitKraken Enterprise: Self-Hosted
GitKraken Enterprise Self-Hosted ships with its own account management system, release
manager and the client downloads. This solution runs on a Linux server or virtual machine
inside your network. Once installed and configured, your users’ GitKraken clients will route
user accounts, license validation and new release checks to your self-hosted GitKraken
Enterprise server.

The GitKraken Enterprise self-hosted solution supports LDAP integration, which makes it
easier to manage user licenses. In summary, the self-hosted solution provides the
following:

● Self-hosted account management server for license management
● LDAP integration support
● Control over version updates

GitKraken Enterprise: Stand-Alone
GitKraken Enterprise Stand-Alone serves the same security needs as GitKraken Self-Hosted,
but it saves teams from needing to maintain a server. Instead, only a license file and the
GitKraken Stand-Alone clients are shipped.

The license file activates a user’s GitKraken Stand-Alone client, and then they can get
straight to work.

18

Deploying GitKraken Enterprise Stand-Alone
Because Stand-Alone ships without the account management system, organizations are
required to manage the license allocation. Here are some best practices for dispersing the
license file to users:

● Make the license file and client downloads available to users on a shared network
folder.

● Email users the license file and a link to download the client.
● Share the license file and link to download the client via an internal communication

tool.
● Track how many users use GitKraken to ensure you don’t exceed the number of

licenses purchased.

Training and educational resources
To make adopting Git and GitKraken easier, we have a series of educational videos, cheat
sheets, and web resources that can help your developers come up to speed faster. You can
share these resources with your teams:

● Tutorial videos for learning Git
● GitKraken training resources for GitHub users

Conclusion
A developer’s time is better spent focused on programming, rather than dealing with the
overhead that comes with Git. When developers—regardless of experience level—rely on
the command line interface, it results in time wasted referencing Git commands,
operations, and syntax online or through colleagues. Providing developers the GitKraken
GUI will reduce the time it takes teams to collaborate and ship software on time and on
budget.

About GitKraken
GitKraken is a product of Axosoft, where we develop software that is used by the world’s
most elite software engineers. Companies like Apple, Google, Microsoft, Amazon and
thousands of other leading companies use GitKraken, Glo Boards and Axosoft.

19

https://www.gitkraken.com/learn-git
https://www.gitkraken.com/github#training-resources

