
download gitKraken desktop for free

the basics of GIT
cheat sheet

Git Config

Set your user information to be used in the commit history.

Sets the name you want to attach to your commit transactions.

Sets the email you want to attach to your commit transactions.

Enables helpful colorization of the command line output.

Creating and Cloning Repositories

You can create a new git repository locally, or make a copy of an
existing online repository to work from.

The git init command turns the directory where you ran the command
into a new Git repository by adding a .git folder and instructs Git to
start watching for changes.

The Clone command downloads a copy of a repository from a remote
server, or a service like GitHub, Gitlab, or Bitbucket. This includes all
of the files and commits, as well as connec­tions to all the remote
branches.

Making Changes

Git makes it easy to track changes to files over time. Once you have
initialized or cloned a repository, all of your changes are in a Work In
Process state and Git can see what changes have been made.
However, in order for Git to track a snapshot of your changes, you will
need to add and commit your work.

Stages a single file in preparation for committing.

Stages all the changed files in your current directory in preparation
for committing.

$	git config --global user.name	"[name]"

$	git config --global user.email	"[email address]"

$	git config --global color.ui auto

$	git init

$	git clone [url]

$	git add [file]

$	git add .

Making Changes Cont'd

Makes a permanent record of the file snapshots currently staged in
your versioning history and includes a short message about what you
changed.

Note: If you run without , you will find yourself in
the default text editor of your terminal, which is very commonly 	 .
From here you can write your commit message, save and exit the
editor to complete the commit.

Viewing Changes

Git offers a lot of visibility to the state of your current work, your
history of commits, and fine-grain details about those changes.

Shows you information about what state Git is in, including which
branch you are on and if you are up to date with the remote
repositories.

Lists version history for the current branch, including full commit
message, author, time of the commit, and the commit hash.

Lists a shortened version history for the current branch, only showing
the first line of the commit message and commit hash.

Shows all changes across files that have not been staged yet.

Shows the metadata and content changes of the specified commit.
The commit is identified by the hash, which is a unique id number
generated when commits are made.

The .gitignore file

There are certain files that you might not want to track, such as
images and videos or files that contain sensitive information like
credentials. You can do this by creating a special file named	

	 Inside this file you can list individual files to ignore or
use the * wildcard to exclude entire types of files, such as *.jpg or
*.mp4.

$	git commit -m	"[descriptive message]"

git commit -m
vim

$	git status

$	git log

$	git log --oneline

$	git diff

$	git show [commit]

.gitignore.

Ready to simplify complex Git commands? Learn Git quickly &

increase productivity with the GitKraken Git GUI!

https://www.gitkraken.com/resources/github
https://www.gitkraken.com/resources/gitlab
https://www.gitkraken.com/resources/bitbucket
https://www.gitkraken.com/learn/git/commit
https://www.gitkraken.com/git-client/try-free?utm_campaign=20874607-Git%20Cheat%20Sheet%20-%20Lead%20Magnet%20-%20Q3%202025&utm_source=pdf&utm_medium=leadmagnet&utm_content=git_cheat_sheet_2025?source=paid_social&product=gitkraken

gitkraken cheat sheet : the basics of GIT

Undoing Changes and Commits

There are two main ways to make changes to your commit history.

Creates a new commit that undoes the changes introduced by the
specified commit.

This is a safe way to reverse changes in a shared history because it
preserves commit history and doesn't rewrite it.

Undoes all commits after and preserves changes locally.
While powerful, this carries a high risk of merge conflicts if you have
made a lot of changes since that commit.

Moves the current branch to the specified commit and updates the
working directory and index to match.

⚠ ️Warning: This permanently deletes changes and rewrites history.
Avoid using on shared branches unless you’re sure others haven’t
based work on the affected commits.

Connecting to Remote Repositories

Local repositories can have connections to one or more remote
repositories in order to push changes to them or pull changes from
them. If you clone a repository, the remote URL you cloned it from will
automatically be set as as the remote name.

Specifies the remote repository for your local repository. The
points to a repository on a remote server or service like GitHub,
Gitlab, or Bitbucket.

Synchronize Changes

Synchronize your local repository with the remote repository.

Uploads all local commits from your local history to your specified
remote and named branch.

Downloads all history from the remote branch but does not
automatically commit them.

Combines the fetched history from the remote branch into the current
local branch.

Updates your current local working branch with all new commits from
the corresponding remote branch. is a combination of

 and .

⚠ ️Tip: Git merges can be tricky. You can use GitKraken AI to make
them easier!

$ git revert [commit]

$ git reset [commit]

[commit]

$ git reset --hard [commit]

origin

$ git remote add [remote name] [url]

[url]

$ git push [remote name] [branch]

$ git fetch

$ git merge

$ git pull

gitpull git
fetch git merge

Learn About GitKraken AI

Branches

Branches allow you to make commits that do not affect your other
work until you are ready to apply those changes. Any commits will be
made on the branch you have currently ''checked out'' and not the
default 'main' or 'master' branch. You can always use to
see which branch you are on.

Creates a new branch. For example:

Switches to the specified branch and updates any documents to use
that version.

Git Branching diagram:

git	status

$ git branch [branch-name]

git branch feature-A

$ git checkout [branch-name]

$ git merge [branch-name]

[branch-name]

$ git branch -d [branch-name]

Combines the specified branch's history into the current branch.
Always think of Git pulling things into it. In this case, pulling the
changes from the specified into your currently
checked out branch.

Deletes the specified branch

$ git merge

$ git branch

Learn more Git
commands &

concepts online!

Visit Our Learning

Center →

https://www.gitkraken.com/learn/git/problems/pull-remote-git-branch
https://www.gitkraken.com/learn/git/problems/git-pull-vs-fetch
https://www.gitkraken.com/learn/git/problems/git-pull-vs-fetch
https://www.gitkraken.com/learn/git/problems/merge-git-branch
https://www.gitkraken.com/solutions/gitkraken-ai?utm_campaign=20874607-Git%20Cheat%20Sheet%20-%20Lead%20Magnet%20-%20Q3%202025&utm_source=pdf&utm_medium=leadmagnet&utm_content=git_cheat_sheet_2025?source=paid_social&product=gitkraken
https://www.gitkraken.com/learn/git?utm_campaign=20874607-Git%20Cheat%20Sheet%20-%20Lead%20Magnet%20-%20Q3%202025&utm_source=pdf&utm_medium=leadmagnet&utm_content=git_cheat_sheet_2025?source=paid_social&product=gitkraken
https://www.gitkraken.com/learn/git?utm_campaign=20874607-Git%20Cheat%20Sheet%20-%20Lead%20Magnet%20-%20Q3%202025&utm_source=pdf&utm_medium=leadmagnet&utm_content=git_cheat_sheet_2025?source=paid_social&product=gitkraken

